If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+11x=0
a = 10; b = 11; c = 0;
Δ = b2-4ac
Δ = 112-4·10·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-11}{2*10}=\frac{-22}{20} =-1+1/10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+11}{2*10}=\frac{0}{20} =0 $
| 9x-6x+3=3(x+1) | | 9/7y-14=-5 | | 12r+24-5r=3 | | 12d+4d-13d-3=3 | | 7x+35=110 | | 7x-7=8x-12 | | m+5/9-6=2m-1/3-1/9 | | 8⋅=(n÷3)⋅ | | 14c-13c-c+4c+1=13 | | 13+2=-5(4x-3) | | x+(0.15x)=5.49 | | 6v-3v+6v-1=8 | | -5+v=9 | | 13q-12q-q+2q=20 | | 20x-260=20x-140 | | -18+58=-5(x+2) | | 5x=240-2x | | 11k+3k-11k-3=6 | | 5/8+b=-3/4 | | 0=-16^2+40t+5 | | 11c-4c=14 | | 25=5r-7 | | 6g-5g=15 | | 12+3x+4+3x=(3x+8) | | 6b-2b-3b-1=5 | | x*3/5=5/6 | | x-1=58-x | | -5v-8v=0 | | 5w-5w+w-1=4 | | {x}=10 | | X^2-x+6=10 | | 9/6x=-5 |